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Preface

Uncertainty quantification in simulation science

There has been recently an intense interest in verification and validation of large-scale simulations and in
modeling uncertainty, as it is manifested by the many workshops that have been organized to address these
issues. Verification is the process by which we ensure that the algorithms have been implemented correctly
and that the numerical solution approaches the exact solution of the particular model — typically a partial
differential equation (PDE). The exact solution is rarely known for real systems so “fabricated” solutions
for simpler systems are typically employed in the verification process. Validation, on the other hand, is the
process that determines how accurately is the mathematical model compared to the physical phenomenon
simulated, so it involves comparison of simulation results with experimental data. Characterization of exper-
imental inputs in detail is of great importance but of equal importance are the metrics used in the
comparison.

Uncertainty quantification (UQ) is a complex subject but it can be roughly classified as numerical uncer-
tainty and physical uncertainty. The former includes spatial and temporal discretization errors, errors in solv-
ers (e.g., incomplete iterations, loss of orthogonality), geometric discretization (e.g., linear segments), artificial
boundary conditions (e.g., infinite domains), etc. Physical uncertainty includes errors due to imprecise or
unknown material properties (viscosity, permeability, modulus of elasticity, etc.), boundary and initial condi-
tions, random geometric roughness, equations of state, constitutive laws, etc. Uncertainty can also be charac-
terized as epistemic, i.e. reducible or as reducible. For example, given the current rapid advances in
quantitative imaging technologies, the rock permeability of an oil reservoir could be measured much more
accurately in the future — this is an example of epistemic uncertainty. However, even in this case, and certainly
in many simulations of realistic configurations, uncertainty is irreducible beyond some level or scale, e.g.,
background turbulence — there are no absolutely quiet wind tunnels and the atmosphere or the ocean are
inherently noisy environments.

Most of the research effort in scientific computing so far has been in developing efficient algorithms for dif-
ferent applications, assuming an ideal input with precisely defined computational domains. Numerical accu-
racy checks and error control via adaptive discretization have been employed in simulations for some time
now, but mostly based on heuristics. With the field reaching now some degree of maturity, the interest has
shifted to deriving more rigorous error estimators and posing the more general question of how to model
uncertain inputs and how to formulate new algorithms in order for the simulation output to reflect accurately
the propagation of uncertainty. To this end, the standard Monte Carlo approach can be employed but it is
computationally expensive and it is only used as the last resort. The sensitivity method is an alternative more
economical approach, based on moments of samples, but it is less robust and it depends strongly on the mod-
eling assumptions. There are other more suitable methods for physical and biological applications. The most
popular technique for modeling stochastic engineering systems is the perturbation method where all stochastic
quantities are expanded around their mean value via a Taylor series. This approach, however, is limited to
small perturbations and does not readily provide information on high-order statistics of the response. Another
approach is based on expanding the inverse of the stochastic operator in a Neumann series, but this too is
limited to small fluctuations. Bayesian statistical modeling has been used effectively in several different
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applications to deal with large uncertainties. At the heart of this framework is the celebrated Bayes theorem
that provides a formal way of linking the prediction with the observed data. A non-statistical method, the
polynomial chaos expansion and its variants, has received considerable attention in the last few years as it pro-
vides a high-order hierarchical representation of stochastic processes, similar to spectral expansions. An exam-
ple of this method to constructing error bars for a three-dimensional heat transfer problem is shown in Fig. 1.

The most important goal of incorporating uncertainty modeling and its propagation in large-scale simula-
tions is that it will lead to new non-sterilized simulations, where the input parameters and geometric domain
have realistic representations. The simulation output will be denoted not by single points but by distributions
that express the sensitivities of the system to the uncertainty in the inputs. This is a key element to reliability
studies and will provide the first step towards establishing simulation-based certificates of fidelity of new
designs. It will also be a valuable tool for experimentalists as it will quantify individual sensitivities to different
parameters, thereby suggesting new experiments and instrumentation.

This special volume of JCP includes 14 papers that deal with various aspects of UQ in simulations. It
addresses both numerical and physical accuracy, and presents different techniques and points of view as
UQ is a new field and no consensus exists at the moment. The first few papers present primarily methods while
the rest present applications including ocean modeling, porous media, chaotic dynamics, aeroelasticity, fluid
mechanics and shock dynamics. The interested reader may also find useful material in two related publications
with focus on computational fluid dynamics and on structural mechanics in [1,2], respectively. Similar material
but with a broader range of applications can be found in [3].

The first paper by Oberkampf and Barone provides a verification and validation framework with compre-
hensive definitions and reviews of the main concepts. The specific topic addressed is validation metrics in com-
paring simulation results with experimental data. Clearly, the old way of graphical comparison is inadequate
and the authors develop two specific validation metrics and demonstrate their effectiveness in three represen-
tative examples.

The second paper by Sen et al. addresses numerical uncertainty and develops a posteriori error estimators
in conjunction with techniques in constructing global reduced basis. The latter is also very useful in studying
physical uncertainty. A new natural norm is introduced and a fast computational procedure is presented along
with two examples for a heat conduction and an acoustics problem.

The third paper by Ghanem and Doostan presents a new method for the characterization of stochastic pro-
cesses given limited experimental data. The authors employ polynomial chaos expansions with corresponding
coefficients which are themselves random variables obtained using a Bayesian inference scheme.

The fourth paper by Su and Lucor develops a new method for constructing covariance kernels for stochas-
tic inputs, which are modeled as processes that vary in space. The authors derive a stochastic PDE that is
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Fig. 1. Unsteady heat conduction with uncertain thermal diffusivity modeled by generalized polynomial chaos. The heat source is the
cubic element shown in the 3D plot. (Left) Isosurfaces of standard deviation of temperature. (Right) Evolution of the mean temperature
with error bars at two reference points. (Courtesy of Xiaoliang Wan, Brown University.)
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forced by white noise and has the form of the Helmholtz equation. Different covariance kernels are derived for
simple and complex geometries in multi-dimensions.

The fifth paper by Schwab and Todor also deals with modeling stochastic inputs using the Karhunen-Loeve
representation. Here the focus is on resolving the covariance kernel fast, with almost linear work, by using a
fast multipole accelerated Krylov eigensolver. The authors also derive accurate estimates of the convergence
rate of the Karhunen—Loeve expansion in multi-dimensions.

The sixth paper by Dosteri et al. presents an efficient sampling strategy for the Markov Chain Monte Carlo
(MCMC) method. The authors use inexpensive coarse-scale solutions to compute the gradients involved in the
Langevin algorithms and prove that the modified MCMC converges to the correct posterior distribution given
some mild technical conditions. Examples are presented for the permeability field.

The seventh paper by Christie et al. adapts a Bayesian framework to address uncertainty quantification in
the context of oil reservoir simulations. The authors address the very real difficulties which arise, primarily the
insufficiency of data, in this context and illustrate their ideas with specific examples.

The eighth paper by Park and Cushman models the dynamics of motile particles in random porous media
with a hierarchy of stochastic differential equations. The multiscales are handled differently with the motile
particle modeled as an operator stable Levy processes while at the macro scale the renormalized Fokker—
Planck equations are employed.

The ninth paper by Winter et al. develops multivariate analysis of variance (ANOVA) methods to analyze
the relation between heterogeneous and uncertain conductivities and the flow properties in an acquifer.
ANOVA is performed on a large sample of Monte Carlo simulations.

The tenth paper is by Lermusiaux and addresses uncertainty modeling in ocean dynamics. The author
reviews the many challenges involved in modeling interdisciplinary ocean processes and presents the error sub-
space statistical estimation (ESSE) method, which has been used with success in the Harvard Ocean Prediction
System (HOPS) code. ESSE characterizes and predicts the largest uncertainties by evolving an error subspace
of variable size that targets the more dominant errors.

The eleventh paper by Yu et al. addresses errors created within a simulation of a chaotic flow. The impor-
tant issue here is that for chaotic flows, the simulation is underresolved, and since new structures are created
on all length scales as the mesh is refined, convergence has to be interpreted in terms of averaged quantities.
The central theme is to identify averages and statistical quantities which can be computed reliably.

The twelveth paper by Beran et al. considers the oscillations of an airfoil subject to variable (uncertain)
torsional stiffness and to random initial conditions in the pitch angle. The authors consider the response
of this stochastic dynamical system before and during the onset of the limit cycle oscillation, and in this
context they evaluate several hybrid schemes that involve polynomial chaos and Haar wavelets as well as
B-splines.

The thirteenth paper by Tartakovsky and Xiu considers geometric uncertainties in the form of random
roughness pipe flow. The authors introduce a stochastic mapping that transforms the original flow problem
in a domain with random boundary into another stochastic problem with deterministic boundary. They
employ the generalized polynomial chaos to solve fast the resulting stochastic system and they compare their
results against Monte Carlo simulations.

In the final paper, Lin et al. apply multi-element generalized polynomial chaos to supersonic flow past a
wedge, a classical aerodynamics problem for which analytical solutions exist for the inviscid case. However,
here the authors consider noisy inflow and random oscillations of the wedge around its apex and obtain
new analytical solutions for small perturbations. They study convergence of this new method using the ana-
lytical solutions, and they extend their results to time-dependent noisy inflows.

We hope that this special issue of JCP will contribute to advancing stochastic modeling and motivate new
work in UQ. We would like to thank all the authors and the referees for their contributions and Mr. Xiaoliang
Wan (Brown University) who provided the results of Fig. 1. Finally, we are grateful to the chief editor of JCP,
Gretar Tryggvason, for recognizing how timely and important is this subject.
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